Estimating effect of multiple treatments#

[1]:
from dowhy import CausalModel
import dowhy.datasets

import warnings
warnings.filterwarnings('ignore')
[2]:
data = dowhy.datasets.linear_dataset(10, num_common_causes=4, num_samples=10000,
                                     num_instruments=0, num_effect_modifiers=2,
                                     num_treatments=2,
                                     treatment_is_binary=False,
                                     num_discrete_common_causes=2,
                                     num_discrete_effect_modifiers=0,
                                     one_hot_encode=False)
df=data['df']
df.head()
[2]:
X0 X1 W0 W1 W2 W3 v0 v1 y
0 0.168032 -0.582027 -0.877777 0.580743 1 1 1.594449 6.249333 56.248186
1 1.135945 1.113098 1.651627 0.951515 3 3 19.642165 23.518580 4102.859143
2 0.189856 -0.548917 -3.208358 0.343652 2 1 -2.013081 11.659060 161.485673
3 1.197138 2.295597 -0.835399 0.970133 1 2 7.193234 13.023736 1570.680940
4 0.225148 0.284826 -0.180523 0.860278 1 1 4.144428 7.532836 187.331575
[3]:
model = CausalModel(data=data["df"],
                    treatment=data["treatment_name"], outcome=data["outcome_name"],
                    graph=data["gml_graph"])
[4]:
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))
../_images/example_notebooks_dowhy_multiple_treatments_4_0.png
../_images/example_notebooks_dowhy_multiple_treatments_4_1.png
[5]:
identified_estimand= model.identify_effect(proceed_when_unidentifiable=True)
print(identified_estimand)
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W1,W2,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W2,W0,W3,U) = P(y|v0,v1,W1,W2,W0,W3)

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

Linear model#

Let us first see an example for a linear model. The control_value and treatment_value can be provided as a tuple/list when the treatment is multi-dimensional.

The interpretation is change in y when v0 and v1 are changed from (0,0) to (1,1).

[6]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1),
                                        method_params={'need_conditional_estimates': False})
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W1,W2,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W2,W0,W3,U) = P(y|v0,v1,W1,W2,W0,W3)

## Realized estimand
b: y~v0+v1+W1+W2+W0+W3+v0*X0+v0*X1+v1*X0+v1*X1
Target units: ate

## Estimate
Mean value: 50.57316998951839

You can estimate conditional effects, based on effect modifiers.

[7]:
linear_estimate = model.estimate_effect(identified_estimand,
                                        method_name="backdoor.linear_regression",
                                        control_value=(0,0),
                                        treatment_value=(1,1))
print(linear_estimate)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
    d
─────────(E[y|W1,W2,W0,W3])
d[v₀  v₁]
Estimand assumption 1, Unconfoundedness: If U→{v0,v1} and U→y then P(y|v0,v1,W1,W2,W0,W3,U) = P(y|v0,v1,W1,W2,W0,W3)

## Realized estimand
b: y~v0+v1+W1+W2+W0+W3+v0*X0+v0*X1+v1*X0+v1*X1
Target units:

## Estimate
Mean value: 50.57316998951839
### Conditional Estimates
__categorical__X0  __categorical__X1
(-2.739, -0.134]   (-3.862, -0.646]     -93.486560
                   (-0.646, -0.0621]    -24.125216
                   (-0.0621, 0.456]      18.824671
                   (0.456, 1.051]        62.199724
                   (1.051, 3.554]       130.444222
(-0.134, 0.471]    (-3.862, -0.646]     -72.862080
                   (-0.646, -0.0621]     -4.793482
                   (-0.0621, 0.456]      38.837861
                   (0.456, 1.051]        81.778058
                   (1.051, 3.554]       152.108120
(0.471, 0.971]     (-3.862, -0.646]     -60.995027
                   (-0.646, -0.0621]      6.509509
                   (-0.0621, 0.456]      49.421424
                   (0.456, 1.051]        93.885081
                   (1.051, 3.554]       168.300456
(0.971, 1.563]     (-3.862, -0.646]     -51.037548
                   (-0.646, -0.0621]     18.556482
                   (-0.0621, 0.456]      62.254745
                   (0.456, 1.051]       105.613255
                   (1.051, 3.554]       174.771928
(1.563, 4.586]     (-3.862, -0.646]     -31.176964
                   (-0.646, -0.0621]     39.080134
                   (-0.0621, 0.456]      81.182838
                   (0.456, 1.051]       124.887844
                   (1.051, 3.554]       193.640084
dtype: float64

More methods#

You can also use methods from EconML or CausalML libraries that support multiple treatments. You can look at examples from the conditional effect notebook: https://py-why.github.io/dowhy/example_notebooks/dowhy-conditional-treatment-effects.html

Propensity-based methods do not support multiple treatments currently.