Mediation analysis with DoWhy: Direct and Indirect Effects#

[1]:
import numpy as np
import pandas as pd

from dowhy import CausalModel
import dowhy.datasets

# Warnings and logging
import warnings
warnings.filterwarnings('ignore')

Creating a dataset#

[2]:
# Creating a dataset with a single confounder and a single mediator (num_frontdoor_variables)
data = dowhy.datasets.linear_dataset(10, num_common_causes=1, num_samples=10000,
                                     num_instruments=0, num_effect_modifiers=0,
                                     num_treatments=1,
                                     num_frontdoor_variables=1,
                                     treatment_is_binary=False,
                                    outcome_is_binary=False)
df = data['df']
print(df.head())
         FD0        W0        v0          y
0  11.132132  1.779049  1.946602  51.760949
1  -9.327435 -1.475921 -2.033499 -43.353136
2 -12.392053 -1.324656 -3.048386 -56.514944
3  -1.916289 -0.484133 -0.334785  -9.213064
4  -4.277861 -0.166914 -1.275186 -19.011504

Step 1: Modeling the causal mechanism#

We create a dataset following a causal graph based on the frontdoor criterion. That is, there is no direct effect of the treatment on outcome; all effect is mediated through the frontdoor variable FD0.

[3]:
model = CausalModel(df,
                    data["treatment_name"],data["outcome_name"],
                    data["gml_graph"],
                   missing_nodes_as_confounders=True)

model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))
../_images/example_notebooks_dowhy_mediation_analysis_5_0.png
../_images/example_notebooks_dowhy_mediation_analysis_5_1.png

Step 2: Identifying the natural direct and indirect effects#

We use the estimand_type argument to specify that the target estimand should be for a natural direct effect or the natural indirect effect. For definitions, see Interpretation and Identification of Causal Mediation by Judea Pearl.

Natural direct effect: Effect due to the path v0->y

Natural indirect effect: Effect due to the path v0->FD0->y (mediated by FD0).

[4]:
# Natural direct effect (nde)
identified_estimand_nde = model.identify_effect(estimand_type="nonparametric-nde",
                                            proceed_when_unidentifiable=True)
print(identified_estimand_nde)
Estimand type: EstimandType.NONPARAMETRIC_NDE

### Estimand : 1
Estimand name: mediation
Estimand expression:
 ⎡  d         ⎤
E⎢─────(y|FD0)⎥
 ⎣d[v₀]       ⎦
Estimand assumption 1, Mediation: FD0 intercepts (blocks) all directed paths from v0 to y except the path {v0}→{y}.
Estimand assumption 2, First-stage-unconfoundedness: If U→{v0} and U→{FD0} then P(FD0|v0,U) = P(FD0|v0)
Estimand assumption 3, Second-stage-unconfoundedness: If U→{FD0} and U→y then P(y|FD0, v0, U) = P(y|FD0, v0)

[5]:
# Natural indirect effect (nie)
identified_estimand_nie = model.identify_effect(estimand_type="nonparametric-nie",
                                            proceed_when_unidentifiable=True)
print(identified_estimand_nie)
Estimand type: EstimandType.NONPARAMETRIC_NIE

### Estimand : 1
Estimand name: mediation
Estimand expression:
 ⎡  d         d         ⎤
E⎢──────(y)⋅─────([FD₀])⎥
 ⎣d[FD₀]    d[v₀]       ⎦
Estimand assumption 1, Mediation: FD0 intercepts (blocks) all directed paths from v0 to y except the path {v0}→{y}.
Estimand assumption 2, First-stage-unconfoundedness: If U→{v0} and U→{FD0} then P(FD0|v0,U) = P(FD0|v0)
Estimand assumption 3, Second-stage-unconfoundedness: If U→{FD0} and U→y then P(y|FD0, v0, U) = P(y|FD0, v0)

Step 3: Estimation of the effect#

Currently only two stage linear regression is supported for estimation. We plan to add a non-parametric Monte Carlo method soon as described in Imai, Keele and Yamamoto (2010).

Natural Indirect Effect#

The estimator converts the mediation effect estimation to a series of backdoor effect estimations. 1. The first-stage model estimates the effect from treatment (v0) to the mediator (FD0). 2. The second-stage model estimates the effect from mediator (FD0) to the outcome (Y).

[6]:
import dowhy.causal_estimators.linear_regression_estimator
causal_estimate_nie = model.estimate_effect(identified_estimand_nie,
                                        method_name="mediation.two_stage_regression",
                                       confidence_intervals=False,
                                       test_significance=False,
                                        method_params = {
                                            'first_stage_model': dowhy.causal_estimators.linear_regression_estimator.LinearRegressionEstimator,
                                            'second_stage_model': dowhy.causal_estimators.linear_regression_estimator.LinearRegressionEstimator
                                        }
                                       )
print(causal_estimate_nie)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_NIE

### Estimand : 1
Estimand name: mediation
Estimand expression:
 ⎡  d         d         ⎤
E⎢──────(y)⋅─────([FD₀])⎥
 ⎣d[FD₀]    d[v₀]       ⎦
Estimand assumption 1, Mediation: FD0 intercepts (blocks) all directed paths from v0 to y except the path {v0}→{y}.
Estimand assumption 2, First-stage-unconfoundedness: If U→{v0} and U→{FD0} then P(FD0|v0,U) = P(FD0|v0)
Estimand assumption 3, Second-stage-unconfoundedness: If U→{FD0} and U→y then P(y|FD0, v0, U) = P(y|FD0, v0)

## Realized estimand
(b: FD0~v0+W0)*(b: y~FD0+W0)
Target units: ate

## Estimate
Mean value: 18.08633957334745

Note that the value equals the true value of the natural indirect effect (up to random noise).

[7]:
print(causal_estimate_nie.value, data["ate"])
18.08633957334745 18.031713431389317

The parameter is called ate because in the simulated dataset, the direct effect is set to be zero.

Natural Direct Effect#

Now let us check whether the direct effect estimator returns the (correct) estimate of zero.

[8]:
causal_estimate_nde = model.estimate_effect(identified_estimand_nde,
                                        method_name="mediation.two_stage_regression",
                                       confidence_intervals=False,
                                       test_significance=False,
                                        method_params = {
                                            'first_stage_model': dowhy.causal_estimators.linear_regression_estimator.LinearRegressionEstimator,
                                            'second_stage_model': dowhy.causal_estimators.linear_regression_estimator.LinearRegressionEstimator
                                        }
                                       )
print(causal_estimate_nde)
*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_NDE

### Estimand : 1
Estimand name: mediation
Estimand expression:
 ⎡  d         ⎤
E⎢─────(y|FD0)⎥
 ⎣d[v₀]       ⎦
Estimand assumption 1, Mediation: FD0 intercepts (blocks) all directed paths from v0 to y except the path {v0}→{y}.
Estimand assumption 2, First-stage-unconfoundedness: If U→{v0} and U→{FD0} then P(FD0|v0,U) = P(FD0|v0)
Estimand assumption 3, Second-stage-unconfoundedness: If U→{FD0} and U→y then P(y|FD0, v0, U) = P(y|FD0, v0)

## Realized estimand
(b: y~v0+W0) - ((b: FD0~v0+W0)*(b: y~FD0+W0))
Target units: ate

## Estimate
Mean value: -8.798289826472683e-06

Step 4: Refutations#

TODO