2.5.2. pywhy_graphs.functional.apply_linear_soft_intervention#

pywhy_graphs.functional.apply_linear_soft_intervention(G, targets: Set[int | float | str | Any], type: str = 'additive', random_state=None)[source]#

Applies a soft intervention to a linear Gaussian graph.

Parameters:
GGraph

Linear functional causal graph.

targetsSet[Node]

The set of nodes to intervene on simultanenously.

typestr, optional

Type of intervention, by default “additive”.

random_stateRandomState, optional

Random seed, by default None.

Returns:
GGraph

The functional linear causal graph with the intervention applied on the target nodes. The perturbation occurs on the gaussian_noise_function of the target nodes. That is, the soft intervention, perturbs the exogenous noise of the target nodes.