dowhy.gcm.ml package

Submodules

dowhy.gcm.ml.autolguon module

class dowhy.gcm.ml.autolguon.AutoGluonClassifier(**auto_gluon_parameters)[source]

Bases: _AutoGluonModel, ClassificationModel

property classes: List[str]
clone()[source]

Clones the prediction model using the same hyper parameters but not fitted.

Returns

An unfitted clone of the prediction model.

predict_probabilities(X: ndarray) ndarray[source]
class dowhy.gcm.ml.autolguon.AutoGluonRegressor(**auto_gluon_parameters)[source]

Bases: _AutoGluonModel

clone()[source]

Clones the prediction model using the same hyper parameters but not fitted.

Returns

An unfitted clone of the prediction model.

dowhy.gcm.ml.classification module

Functions and classes in this module should be considered experimental, meaning there might be breaking API changes in the future.

class dowhy.gcm.ml.classification.SklearnClassificationModel(sklearn_mdl: Any)[source]

Bases: SklearnRegressionModel, ClassificationModel

property classes: List[str]
clone()[source]

Clones the prediction model using the same hyper parameters but not fitted. :return: An unfitted clone of the prediction model.

predict_probabilities(X: array) ndarray[source]
dowhy.gcm.ml.classification.create_ada_boost_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_extra_trees_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_gaussian_nb_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_gaussian_process_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_hist_gradient_boost_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_knn_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_logistic_regression_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_polynom_logistic_regression_classifier(degree: int = 3, **kwargs_logistic_regression) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_random_forest_classifier(**kwargs) SklearnClassificationModel[source]
dowhy.gcm.ml.classification.create_support_vector_classifier(**kwargs) SklearnClassificationModel[source]

dowhy.gcm.ml.regression module

Functions and classes in this module should be considered experimental, meaning there might be breaking API changes in the future.

class dowhy.gcm.ml.regression.InvertibleExponentialFunction[source]

Bases: InvertibleFunction

evaluate(X: ndarray) ndarray[source]

Applies the function on the input.

evaluate_inverse(X: ndarray) ndarray[source]

Returns the outcome of applying the inverse of the function on the inputs.

class dowhy.gcm.ml.regression.InvertibleIdentityFunction[source]

Bases: InvertibleFunction

evaluate(X: ndarray) ndarray[source]

Applies the function on the input.

evaluate_inverse(X: ndarray) ndarray[source]

Returns the outcome of applying the inverse of the function on the inputs.

class dowhy.gcm.ml.regression.InvertibleLogarithmicFunction[source]

Bases: InvertibleFunction

evaluate(X: ndarray) ndarray[source]

Applies the function on the input.

evaluate_inverse(X: ndarray) ndarray[source]

Returns the outcome of applying the inverse of the function on the inputs.

class dowhy.gcm.ml.regression.SklearnRegressionModel(sklearn_mdl: Any)[source]

Bases: PredictionModel

General wrapper class for sklearn models.

clone()[source]

Clones the prediction model using the same hyper parameters but not fitted. :return: An unfitted clone of the prediction model.

fit(X: ndarray, Y: ndarray) None[source]
predict(X: array) ndarray[source]
property sklearn_model: Any
dowhy.gcm.ml.regression.create_ada_boost_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_elastic_net_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_extra_trees_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_gaussian_process_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_hist_gradient_boost_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_knn_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_lasso_lars_ic_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_lasso_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_linear_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_linear_regressor_with_given_parameters(coefficients: ndarray, intercept: float = 0, **kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_polynom_regressor(degree: int = 3, **kwargs_linear_model) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_random_forest_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_ridge_regressor(**kwargs) SklearnRegressionModel[source]
dowhy.gcm.ml.regression.create_support_vector_regressor(**kwargs) SklearnRegressionModel[source]

Module contents

This module defines implementations of PredictionModel used by the different FunctionalCausalModel implementations, such as PostNonlinearModel or AdditiveNoiseModel.