Simulating the Impact of Interventions ====================================== By simulating the impact of interventions, we answer the questions such as: What will happen to the variable Z if I intervene on Y? How to use it ^^^^^^^^^^^^^^ To see how the method works, let's generate some data: >>> import numpy as np, pandas as pd >>> X = np.random.normal(loc=0, scale=1, size=1000) >>> Y = 2*X + np.random.normal(loc=0, scale=1, size=1000) >>> Z = 3*Y + np.random.normal(loc=0, scale=1, size=1000) >>> training_data = pd.DataFrame(data=dict(X=X, Y=Y, Z=Z)) Next, we'll model cause-effect relationships as a probabilistic causal model and fit it to the data: >>> import networkx as nx >>> from dowhy import gcm >>> causal_model = gcm.ProbabilisticCausalModel(nx.DiGraph([('X', 'Y'), ('Y', 'Z')])) # X -> Y -> Z >>> gcm.auto.assign_causal_mechanisms(causal_model, training_data) >>> gcm.fit(causal_model, training_data) Finally, let's perform an intervention on X. Here, we explicitly perform the intervention :math:`do(X:=1)`: >>> samples = gcm.interventional_samples(causal_model, >>> {'X': lambda x: 1}, >>> num_samples_to_draw=1000) >>> samples.head() X Y Z 0 1 3.481467 12.475105 1 1 1.282945 3.279435 2 1 2.508717 7.907412 3 1 2.077061 5.506252 4 1 1.400568 6.097633 As we can see, X is now fixed at a constant value of 1. This is known as an atomic intervention. We can also perform shift interventions where we shift the random variable X by some value: >>> samples = gcm.interventional_samples(causal_model, >>> {'X': lambda x: x + 0.5}, >>> num_samples_to_draw=1000) >>> samples.head() X Y Z 0 -0.542813 0.031771 1.195391 1 1.615089 2.156833 6.704683 2 1.340949 1.910316 5.882468 3 1.837919 4.360685 12.565738 4 3.791410 8.361918 25.477725 Related example notebooks ^^^^^^^^^^^^^^^^^^^^^^^^^ - :doc:`../../../example_notebooks/gcm_basic_example` - :doc:`../../../example_notebooks/gcm_401k_analysis` - :doc:`../../../example_notebooks/gcm_rca_microservice_architecture`