dowhy.gcm.ml package
Submodules
dowhy.gcm.ml.autogluon module
dowhy.gcm.ml.classification module
- class dowhy.gcm.ml.classification.ClassificationModel[source]
Bases:
PredictionModel
- abstract property classes: List[str]
- class dowhy.gcm.ml.classification.SklearnClassificationModel(sklearn_mdl: Any)[source]
Bases:
SklearnRegressionModel
,ClassificationModel
- property classes: List[str]
- dowhy.gcm.ml.classification.create_ada_boost_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_extra_trees_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_gaussian_nb_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_gaussian_process_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_hist_gradient_boost_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_knn_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_logistic_regression_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_polynom_logistic_regression_classifier(degree: int = 3, **kwargs_logistic_regression) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_random_forest_classifier(**kwargs) SklearnClassificationModel [source]
- dowhy.gcm.ml.classification.create_support_vector_classifier(**kwargs) SklearnClassificationModel [source]
dowhy.gcm.ml.prediction_model module
- class dowhy.gcm.ml.prediction_model.PredictionModel[source]
Bases:
object
Represents general prediction model implementations. Each prediction model should provide a fit and a predict method.
dowhy.gcm.ml.regression module
- class dowhy.gcm.ml.regression.InvertibleExponentialFunction[source]
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleIdentityFunction[source]
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.InvertibleLogarithmicFunction[source]
Bases:
InvertibleFunction
- class dowhy.gcm.ml.regression.LinearRegressionWithFixedParameter(coefficients: ndarray, intercept: float)[source]
Bases:
PredictionModel
- class dowhy.gcm.ml.regression.SklearnRegressionModel(sklearn_mdl: Any)[source]
Bases:
PredictionModel
General wrapper class for sklearn models.
- clone()[source]
Clones the prediction model using the same hyper parameters but not fitted. :return: An unfitted clone of the prediction model.
- property sklearn_model: Any
- dowhy.gcm.ml.regression.create_ada_boost_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_elastic_net_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_extra_trees_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_gaussian_process_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_hist_gradient_boost_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_knn_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_lasso_lars_ic_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_lasso_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_linear_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_linear_regressor_with_given_parameters(coefficients: ndarray, intercept: float = 0) LinearRegressionWithFixedParameter [source]
- dowhy.gcm.ml.regression.create_polynom_regressor(degree: int = 2, **kwargs_linear_model) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_random_forest_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_ridge_regressor(**kwargs) SklearnRegressionModel [source]
- dowhy.gcm.ml.regression.create_support_vector_regressor(**kwargs) SklearnRegressionModel [source]
Module contents
This module defines implementations of PredictionModel
used by the different
FunctionalCausalModel
implementations, such as PostNonlinearModel
or
AdditiveNoiseModel
.