2.3.1. dodiscover.ci.GSquareCITest#
- class dodiscover.ci.GSquareCITest(data_type='binary', levels=None)[source]#
Methods
test
(df, x_vars, y_vars[, z_covariates])Abstract method for all conditional independence tests.
- test(df, x_vars, y_vars, z_covariates=None)[source]#
Abstract method for all conditional independence tests.
- Parameters:
- df
pd.DataFrame
The dataframe containing the dataset.
- x_vars
Set
ofcolumn
A column in
df
.- y_vars
Set
ofcolumn
A column in
df
.- z_covariates
Set
, optional A set of columns in
df
, by default None. If None, then the test should run a standard independence test.
- df
- Returns:
2.3.1.1. Examples using dodiscover.ci.GSquareCITest
#
Basic causal discovery with DoDiscover using the PC algorithm
Basic causal discovery with DoDiscover using the PC algorithm
Causal discovery with interventional data - Sachs dataset
Causal discovery with interventional data - Sachs dataset